Aircraft Propulsion Systems Technology and Design Edited by

A simple guide to the aerodynamic and thermodynamic design and performance of jet engines Second edition Nicholas Cumpsty Cumpsty Jet Propulsion This is the second edition of Cumpsty's excellent selfcontained introduction to the aerodynamic and thermodynamic design of modern civil and military jet engines. Through two engine design projects, first for a new large passenger aircraft, and second for a new fighter aircraft, the text introduces, illustrates and explains the important facets of modern engine design. Individual sections cover aircraft requirements and aerodynamics, principles of gas turbines and jet engines, elementary compressible fluid mechanics, bypass ratio selection, scaling and dimensional analysis, turbine and compressor design and characteristics, design optimisation and off-design performance. The book emphasises principles and ideas, with simplification and approximation used where this helps understanding. This edition has been thoroughly updated and revised, and includes a new appendix on noise control and an expanded treatment of combustion emissions. It is suitable for student courses in aircraft propulsion, but also an invaluable reference for engineers in the engine and airframe industry. The cover design is based on a section through an International Aero Engines V2500 engine installed on an Airbus A320. Reproduced courtesy of Rolls Royce plc.

Download Free PDF View PDF

Download Free PDF View PDF

Resumen: Los beneficios potenciales que representa la aviación en los campos: económico, de seguridad y de desarrollo tecnológico de un país, han motivado a países como Ecuador a fomentar el crecimento de la aeronáutica en los últimos años. La manufactura de vehículos no tripulados y satélites, por ejemplo, han significado importantes pasos en la evolu-ción de esta rama. En este ámbito, la presente investigación contribuye al estudio de sistemas de propulsión innovadores de alta eficiencia, que permitan la disminución del consumo de combustible, emisiones y ruido. El efecto de estas variables en el medio ambiente ha sido estudiado de una manera extensa. Por tal razón, es conocido que el crecimiento de la aviación llevará consigo a una alteracion a nivel global del ecosistema. Debido a ésto, grandes esfuerzos en investiga-ción han sido enfocados a los sistemas de propulsión y fuselaje alternativos, que permitan el desarrollo sustentable de la aviación. El presente trabajo compila la investigación sobre nuevas arquitecturas de sistemas de propulsión, los cua-les exhiben potenciales beneficios en las anteriormente mencionadas métricas. Uno de estos novedosos conceptos es el avión NASA N3-X, el cual en éste estudio ha sido considerado como estructura base de propulsión sobre la cual diferen-tes diseños conceptuales fueron analizados. En éste concepto resaltan dos aspectos importantes en el mejoramiento del rendimiento de las aeronaves: la re-energización de la capa limite (BLI) y la propulsión distribuida. Desde el punto de vista aerodinámico, éstas tecnologias presentan como problemas principales, la distorsión tridimensional inducida por BLI y las pérdidas de presión producidas en los conductos de admisión de los propulsores. Referente a estos problemas, la metodología desarrollada permite la implementación de estos en el análisis del sistema, utilizando diferentes niveles de fidelidad y diseños de propulsión. En resumen, éste trabajo pretende dar una idea de la labor llevada a cabo en el ámbito de los diseños innovadores de propulsión para aviones. Lo cual ha sido considerado especialmente para brin-dar una idea global de la problemática y el enfoque seleccionado para estudiar este complejo sistema. En éste sentido, tambien se destacan los principales desafíos, que se deben abordar con el fin de hacer viables estos conceptos. Abstract: The potential benefits of aviation in the economics, safety and technological development of a country, have motivated countries like Ecuador to create incentives that enable the development of the research in the aerospace field. Some examples are the built in house UAV's and satellites, which represented important steps in the development of the Ecuadorian aerospace research. In this context, the present work contributes with the study of innovative propulsion architectures, which present high overall efficiency and therefore contribute to the reduction of fuel burn and emissions. These metrics have been chosen because previous studies have shown that the growing of aviation in future years may dramatically increase their impact over the environment. For this reason, novel airframe and propulsion layouts as the N3-X concept has been developed in the recent years. Two special features highlight from this concept, which are boundary layer ingestion and distributed propulsion. Although the benfits produced by these features is large, they present numerous challenges. From the aerodynamic perspective, BLI induced distortion and intake losses have shown dramatically mitigate the benefits. Therefore, this aspects have been included in the method developed to assess the propulsion system performance. This method enables to broad the spectrum of concepts studied, whilst using different architectures and approaches with different levels of fidelity. To summarize, this paper intends to give an insight of the work carried out in the area of innovative propulsion designs for aircraft. This is to give a global idea of the framework utilized, whilst emphasize major issues which need to be addressed in order to make feasible these concepts.

Download Free PDF View PDF

Volume 1: Turbomachinery

Cold air test data on the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) turbine were recently collected at NASA Marshall Space Flight Center (MSFC). The turbine is a two-stage reaction machine, which was designed in the early 1970s (Fig. 1a). Overall performance data, static pressures on the first- and second-stage nozzles, and static pressures along the gas path at the hub and tip were gathered and are compared in this paper with various (1-D, quasi 3-D, and 3-D viscous) analysis procedures. The results of each level of analysis is compared to test data to demonstrate the range of applicability for each step in the design process of a turbine.

Download Free PDF View PDF